Ialogen Bond in Medicinal Chemistry

Building Blocks

Robust Solutions for Critical Issues in Medicinal Chemistry

Noncovalent Sulfur Interactions in Medicinal Chemistry

Noncovalent Sulfur Interactions in Medicinal Chemistry

Like halogen bond, there can be seen from the front and side view of thiophene ring that a region of positive, σ -hole-like potential exists near the sulfur atom (**Figure 34**). ^[1] The presence of σ -hole on sulfur atom is available for interaction with electron donating atoms, particularly nitrogen and oxygen. For instance, most commonly sulfur-containing heterocycles can participate in attractive nonbonding interactions that are proving to be useful in the control of molecular conformation. As illustrated in **Figure 34**, there is a sulfur-long pair interaction in 2-(2'-thienyl)pyridine which causes "s-*cis*-locked" conformational preference. One of the earliest examples of an intramolecular N-S interaction that stabilized a specific conformation was reported in 1976. The small molecule single X-ray structure of compound **92** revealed a *syn*, coplanar arrangement of the electron-donating guanidine N atom and the acceptor S atom of the thiadiazole ring. ^[2]



Figure 34. Illustration of σ -hole on sulfur atom and associated intramolecular interaction

Single replacement of oxygen atom in compound **93** with sulfur atom in compound **94** increased both Aurora A and Aurora B inhibition by at least 300-fold (**Figure 35**). Modeling of the heterocyclic core of compound **94** suggested that the two heterocyclic rings adopted a coplanar conformation in which the thiazole sulfur atom and the quinazoline N-3 atom were oriented proximal to each other.

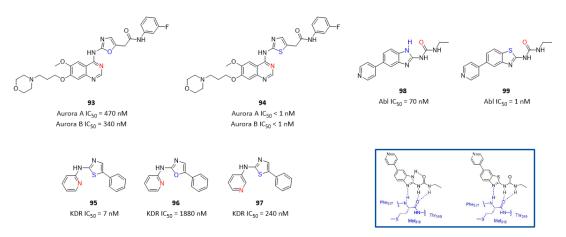


Figure 35. Intramolecular interaction between sulfur atom and nitrogen atom increased inhibition.

It was interesting to observe that a basic nitrogen atom in heteroaryl rings *ortho*- to the 2-amino group in compound **95** increased KDR inhibition by at least 30-fold, compared to isomer **97** with a *meta*- nitrogen. Single replacement of sulfur atom in compound **95** with oxygen atom in compound **96** decreased inhibition by at least 260-fold. Both two observations indicated that there was a key intramolecular interaction between sulfur atom and nitrogen atom in compound **95**, constraining binding favored conformation (**Figure 35**). ^[4]

There was 70-fold difference in potency between compound **98** and **99**, although both compounds had binding favored conformation resulted from intramolecular hydrogen bond and S-N interaction respectively. Calculations suggested that the difference in potency was more a function of desolvation costs, which are higher for the more basic compound **98** (**Figure 35**). ^[5]

In order to discover highly selective PI3K inhibitors based on primary hit compound **100**, replacing amide moiety in compound **100** with pyridine moiety in compound **101** maintained same desired conformation. Co-crystal structure of compound **101** in PI3K revealed that the pyridine ring was coplanar with the thiazole and with the nitrogen of the pyridine pointing inward. It was interpreted that long pair-sulfur interaction stabilized this conformation (**Figure 36**). ^[6]

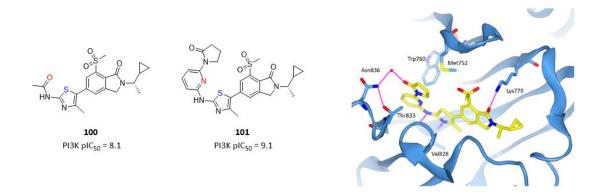


Figure 36. Co-crystal structure of compound 101 in PI3K revealed intramolecular interaction between S-N locked binding desired conformation. (PDB code: 70IL)

As revealed above, intramolecular interaction between the sulfur atom in thiazole or fused-thiazole rings and adjacent nitrogen or oxygen plays a critical role in locking favored conformation. Thiazole or fused-thiazole building blocks are of great value (**Figure 37**).

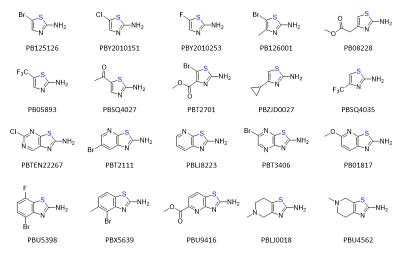


Figure 37. Thiazole and fused-thiazole building blocks

An intramolecular O-S interaction plays a role in orienting the thiazolopyridine heterocycle of the factor Xa inhibitor Edoxaben (**102**), which was approved for the prevention of venous thromboembolism following lower-limb surgery. In the crystal structure of the structurally related factor Xa inhibitor **103**, the close contact between the thiazole S and adjacent amide carbonyl O atom was considered to contribute to the correct alignment of the whole molecule (**Figure 38**). ^[7]

Thiazole-2-carboxylic acid building blocks are of great value for incorporation of O-S interaction into molecule.

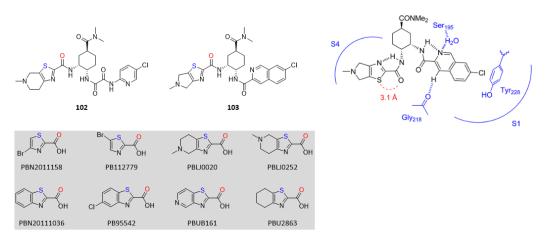


Figure 38. Intramolecular O-S interaction in Edoxaben and its analogues.

Compound **105** is a potent inhibitor of SIRT family members with IC₅₀ values of 15 nM, 10 nM and 33 nM respectively, while the analogous compound **104** is about 10-fold weaker. These data are consistent with the co-crystal structure of SIRT3 with an analogue. The orientation of the 2-carboxamide is coplanar with the thienyl ring such that the oxygen atom lies proximal to the sulfur atom to facilitate a 1,4-electrostatic interaction. This topology facilitates four hydrogen bond interactions between the amide moiety and elements of the protein and a structural bridging water molecule (**Figure 39**). ^[8]

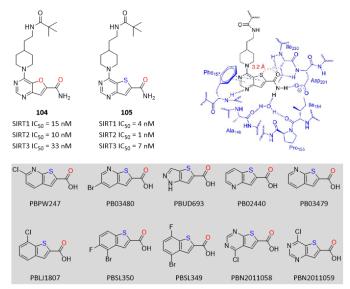


Figure 39. Key O-S contact was revealed in co-crystal structure in SIRT3 protein.

An X-ray co-crystal structure of compound **107** confirmed that the key enzyme-inhibitor interaction was preserved as the topology of the carboxamide moiety favored by close O-S interaction. The importance of this interaction on biological activity was understood by the dramatic difference in potency that was observed between compound **107** and close isomer compound **106**, with the latter 1500-fold weaker than the former. This was attributed to distortion of the carboxamide moiety of compound **106** from planarity, which resulted in a poor alignment for the important hydrogen bond with the protein (**Figure 40**). ^[9]

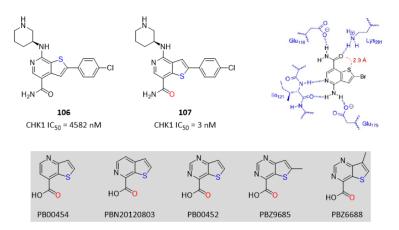


Figure 40. Key O-S contact was revealed in co-crystal structure in CHK1 protein.

References

[1] Brett R. Beno; *et al.* A survey of the role of noncovalent sulfur interactions in drug design. *J. Med. Chem.* **2015**, *58*, 4383-4438.

[2] Akiba K.; et al. Chemistry of hypervalent sulfur. V. A ¹³C-NMR study of the 1:1 adduct of

"Hector's base" with arylcyanamides. Evidence for intramolecular S-N interaction. *Tetrahedron Lett.* **1976**, *17*, 3819-3820.

[3] Jung F. H.; *et al.* Discovery of novel and potent thiazoloquinazolines as selective Aurora A and B kinase inhibitors. *J. Med. Chem.* **2006**, *49*, 955-970.

[4] Bilodeau M. T.; *et al.* The discovery of N-(1,3-thiazol-2-yl)pyridine-2-amines as potent inhibitors of KDR kinase. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 2941-2945.

[5] Park H.; *et al.* Discovery of picomolar ABL kinase inhibitors equipotent for wild type and T315I mutant via structure-based de novo design. *J. Am. Chem. Soc.* **2013**, *135*, 8227-8237.

[6] Matthew W. D. Perry; *et al.* Discovery of AZD8154, a dual PI3K inhibitor for the treatment of asthma. *J. Med. Chem.* **2021**, *64*, 8053-8075.

[7] Yoshikawa K.; *et al.* Design, synthesis, and SAR of cis-1,2-diaminocyclohexane derivatives as potent factor Xa inhibitors. Part II: exploration of 6-6 fused rings as alternative S1 moieties. *Bioorg. Med. Chem.* **2009**, *17*, 8221-8233.

[8] Disch J. S.; *et al.* Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2 and SIRT3. *J. Med. Chem.* **2013**, *56*, 3666-3679.

[9] Zhao L.; *et al.* Design, synthesis and SAR of thienopyridines as potent CHK1 inhibitors. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 7216-8221.

About Author

Jin Li

Senior Director

10+ years' experience in organic chemistry 3+ years' experience in medicinal chemistry 10+ patents and papers published Inventor of 2 clinical candidates Email: li_jin@pharmablock.com

Contact Us

PharmaBlock Sciences (Nanjing), Inc. Tel: +86-400 025 5188 Email: sales@pharmablock.com

PharmaBlock (USA), Inc.

Tel(PA): +1(877)878-5226 Tel(CA): +1(267) 649-7271 Email: salesusa@pharmablock.com

Find out more at www.pharmablock.com

o- in in o

LinkedIn